Getting started quickly with Deep Learning

Machine learning is a fascinating field. Roboticists should invest the time and effort in understanding the fundamentals of machine learning. When it comes to deep learning, it’s possible to get started quickly by using a library with pre-trained models. However, building your own models (however simple they might be in the beginning) is a great way to learn.

There are many resources for getting started with deep learning so this list is in no way exhaustive. These are resources I found to be most helpful in getting started:

      • Nielsen’s Neural Networks and Deep Learning book, available here. The book begins by explaining what neural networks are and builds from there. It’s written in a very practical way and encourages working on an interesting project to apply the concepts as you learn.
      • The Stanford Convolutional Neural Networks for Visual Recognition course gives a thorough introduction to CNNs which are popular for image recognition tasks.
      • The NVIDIA course on Fundamentals of Accelerated Computing with CUDA is a good way to get started with learning GPU programming. There is also an introductory course on Deep Learning for Computer Vision.
      • The Deep Learning Book by Goodfellow, Bengio and Courville is a great reference for a more in depth look into this subject. The book is available here.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s